Bitcoin Mining Software Machine 2020

Are there miner machines available for purchase under $200 (preferably under $100 ) that can mine $10 gross worth of bitcoin a year at current prices ignoring electricity costs? If not what is best cheap miner gross yield?

Are there miner machines available for purchase under $200 (preferably under $100 ) that can mine $10 gross worth of bitcoin a year at current prices ignoring electricity costs? If not what is best cheap miner gross yield?
Is there a maintained spreadsheet anywhere that shows this $mined/minermarketprice ratio for marketprices of new and used miner asics and fpgas?
submitted by dswdswdsw to BitcoinMining [link] [comments]

Are there miner machines available for purchase under $200 (preferably under $100 ) that can mine $10 gross worth of bitcoin a year at current prices ignoring electricity costs? If not what is best cheap miner gross yield?

Are there miner machines available for purchase under $200 (preferably under $100 ) that can mine $10 gross worth of bitcoin a year at current prices ignoring electricity costs? If not what is best cheap miner gross yield?
Used is fine by the way.
I like to look at the $bitcoinyield/minermarketprice return rather than all the others but i havent found a convenient maintained spreadsheet for that.
submitted by dswdswdsw to Bitcoin [link] [comments]

Are there miner machines available for purchase under $200 (preferably under $100 ) that can mine $10 gross worth of bitcoin a year at current prices ignoring electricity costs? If not what is best cheap miner gross yield? /r/BitcoinMining

Are there miner machines available for purchase under $200 (preferably under $100 ) that can mine $10 gross worth of bitcoin a year at current prices ignoring electricity costs? If not what is best cheap miner gross yield? /BitcoinMining submitted by HiIAMCaptainObvious to BitcoinAll [link] [comments]

Are there miner machines available for purchase under $200 (preferably under $100 ) that can mine $10 gross worth of bitcoin a year at current prices ignoring electricity costs? If not what is best cheap miner gross yield? /r/Bitcoin

Are there miner machines available for purchase under $200 (preferably under $100 ) that can mine $10 gross worth of bitcoin a year at current prices ignoring electricity costs? If not what is best cheap miner gross yield? /Bitcoin submitted by HiIAMCaptainObvious to BitcoinAll [link] [comments]

Why Amaury's stunt is clever, why it's a potentially recurring problem, and what can be done about it

TLDR: this isn't an Amaury problem, it's an incentive problem. If BCH splits and the ABC token retains even some residual value, then we're likely to see future "IFP splits" in other tokens and possibly BCH again.
Here's my take on The Amaury Situation.
I think he wants to get out of dealing with BCH and leading the ABC team. I think he's over it. I think he wants to go do something different.
He could quit and walk away. But why do that, when he could create a perpetual income stream for himself as well?
"Dead" coins hold value
A lot of people here seem to think the ABC split will be worthless. I disagree. It will have significant value:
Let's assume ABC is only worth $20. Even under this assumption, Amaury stands to get $10 every ten minutes in perpetuity - for doing absolutely nothing. That's $60/hr. (x 24 hours, or $1440/day) in mail money. That's a decent wage - a perpetual income stream (annuity) - with literally no work required.
But I think $20 is super low. Tokens strangely hold value long after the token appears dead. For example LTC is still worth about $50 - and that's AFTER it's champion announced it was a dead project and all the devs left (and LTC is much less scarce than BCH). FFS even BSV is worth $150 and the entire cryptosphere agrees its a scamtoken run by a con artist.
If LTC and BSV can do it, so can ABC. I predict ABC token will hold significant value.
If the ABC token can hold $50/coin, then Amaury looks to collect $150/hr. (x24 hrs - $3600/day). If it can hold $100/coin, then Amaury gets $300/hr (x24 hrs - ie $7200/day).
But even if it drops to $10/token, he still gets $720 every day.
For doing nothing.
Why is this a problem
This is a serious problem with our incentives. If he succeeds, Amaury will have piloted a repeatable exit-scam recipe for any reference implementation.
"Tired of supporting your halfass token and ragtag devs? Here's an easy escape hatch! Just create a version that pays you a nice annuity, let the token split, and retire with your annuity."
That's the problem. Amaury doesn't have to keep the ticker. He just has to successfully split the token into two tradeable tokens, and he wins his annuity.
What can be done
I'm not sure. I want Amaury to lose here. I want him to get zero annuity. I want to send a clear signal to the next Amaury that splitting the token in order to collect your annuity is a losing strategy.
But I can't see how to accomplish this.
One way would be to attack his chain through reorgs. But there is no direct incentive for miners to do this. And I don't support the notion that "bitcoin works because miners attack chains they don't support."
Another would be to try to drive the value of his token to zero. But that's basically impossible. I think it will be very hard to drive the value of his token even to $20. And at even $20 he gets a nice little annuity. Not a get rich quick scheme by any stretch, but still, it'll pay for a nice mortgage. I know I wouldn't turn down the chance to get an extra grand per day of mail money. So even at $20/token, Amaury will have demonstrated that his easy retirement plan will work. We need $2/token if we want to declare his strategy an unqualified failure. We can't.
And the problem here is that if/when BCHN (or anyone else) becomes the reference client, then its leaders will have the exact same incentive to cause a split when they're tired of managing the project and want out.
Amaury has surfaced a possible gaping vulnerability in the incentive system which creates a perverse incentive to continually create "IFP" type splits. This vulnerability exists in all bitcoin-like tokens. Unless we can find a way to completely block Amaury from his expected revenue stream, he will be setting a precedence that we can expect to see repeated on other tokens and possibly even on BCH again one day.
Edit: I wanted to point out that dskloet has reminded us there is a third option, and that is that instead of allowing Amaury to split the coin, we can soft-fork ABC in such a way that ABC considers the blocks to be valid, but the IFP funds are unusable. The obvious way to do this (as dskloet pointed out) is to blacklist the IFP address. But blacklisting has its own consequences. Another way to do this might be to do something like make the coins sent to that address "unmovable" so that ABC clients will see the blocks paying to IFP and therefore valid, but he can't spend the money.
Edit: to clarify
What's the difference between blacklisting and making the coins unmovable? Isn't that exactly what blacklisting is?
Blacklisting means not accepting transactions from address X.
I propose instead sending "fake coins" to address X. Like putting slugs into a coin-op machine. The machine owner can still try to spend the slugs, but nobody will take them. But the machine owner can still spend any valid tokens spent in the machine.
submitted by jessquit to btc [link] [comments]

Robinhood vs. The Paywall

Paywalls are, technologically speaking, quite fragile. In fact, as of today, if you are quick enough at the keyboard, you can easily copy the full text of a New York Times article before the Javascript kicks in and trims it.
I do this sometimes and I have a fast machine and a fast internet connection, which should make it harder. Other sites are more clever, but for the most part, paywalls are still a bit of a joke.
However, they're getting a lot better and more prevalent. I can imagine that right now an engineer at NYT is working on a better paywall with no practical way of cheating it.
All that aside, an article is just a piece of ordered text and some formatting, and I don't see that changing any time soon. Once you're past the paywall, the text just sits there in your browser, or in your email, or whatever. It can be viewed, copied, pasted, or read by a 3rd party extension.
What would it take, practically speaking, to "Robinhood" that text and make it freely available to everyone whether or not they've paid for it? There are numerous ways to access paywalled content today, which I won't share but aren't hard to find. But I'm interested in whether or not there is a solution that is so robust that it backs publishers into a corner where they need to find another way to make money. And when I say "robust" I mostly mean "legal", because I am assuming that any illegal method would ultimately lose out in a game of legal whack-a-mole (think torrent trackers or darknet markets).
Anyways, some initial considerations...
  1. You'd have to have at least one participant who has access to the paywalled content, but ideally many more than that who can all participate in tossing the content back over the paywall.
  2. You would need to have an immutable and accessible place to put the paywalled content so that other people could point their browsers to that location and see the same content that they would if they were looking at the source.
  3. As noted, you'd want to eliminate as much legal risk as possible. That goes for both the content "suppliers" and the content "consumers" (or, Robinhood and those he gives to).
I am not sure exactly what would happen if I just started copying and pasting paywalled content on, say, Reddit, but I am pretty sure it would catch up with me eventually because I am explicitly re-publishing. This solution would need to be so foolproof that it would put those who would otherwise enforce against it in an untenable position.
So, bear with me, here's what I want to know: how flawed, immoral, antisocial, and generally lacking is the following idea? My suspicion is that it is a pretty bad idea and is also pretty naive, but it's still been fun to think about and maybe some of you would like to discuss it. I am interested in any implications that come to mind.
The idea:
If you want to participate in this scheme, you install a browser extension. If you have access to any paywalled content, then every time you visit a page and view that content, the browser extension grabs the text and compresses it to its smallest possible representation.
Next, the browser extension make the smallest possible arbitrary transaction on the blockchain (looks to be about $0.06 currently), and stores as much of the article as it can fit in the OP_RETURN field, which is basically just a blank field for arbitrary text and currently has a size limit of 256 bytes (Note: There are tons of similar ways to accomplish the same thing, any many better blockchains for this use case. I just don't really keep up with the smaller blockchains and think that we can use the Bitcoin blockchain as a simple way to demonstrate the idea).
It may take a few transactions to store an entire article, but once it's part of the blockchain, it's there forever, and anyone who would want to subsequently view that article would only need to have access to the indices of the transactions and software that can de-compress the OP_RETURN values and reconstruct the article. I imagine this would also happen in the browser extension.
In this way, it's a lot like private torrent trackers. Everybody shares what they have access to, and the pieces of data that comprise the underlying media fly around the network freely. The software client is responsible for piecing them together and making the data cohesive for a given end user.
Today, a torrent client is completely legal, but having pirated media on your computer is not. Also, I'm pretty sure that opening your media collection to peers is also illegal, but I'm not actually sure.
Using the blockchain as the storage mechanism changes the calculus a little bit. You're not storing any pirated data on your machine, rather, you are stashing bits and pieces of it in a decentralized ledger, which nobody owns, meaning that nobody is really accountable for it. It's also impossible to take down.
The question of legality here is something like "are you allowed to include copyrighted works in transaction text on the blockchain?". And if not, how many chunks would the article need to be broken apart into to make it no long "The Article", but rather just pieces of arbitrary data which, if put together in the right order, would happen to reproduce "The Article"? Someone who is more knowledgable than I am would need to chime in here.
I wanted to get a sense of if this is even practical so I grabbed the text from a NYT article called "Opinion | No, the Democrats Haven’t Gone Over the Edge" by David Brooks.
After running the text through 1000 rounds of compression I got it down to 2702 bytes. The current OP_RETURN size limit for a BTC transaction is 256 bytes, so you would need to make around 10 transactions to store this single article.
And each transaction has a fee that goes to miners, which appears to be around 128 satoshis/byte according to
The BTC sent in a given transaction is recoverable, because it could be sent to a wallet that is owned by the sender, but the fees are unavoidable. Given the current rate, storing a NYT Opinion article on the Bitcoin blockchain, forever, would cost about 2707 * 128 Satoshis, or roughly $37.
So my immediate thought is wow that's expensive. I also know that it's frowned upon by the Bitcoin community and would be perceived as antagonistic by the miners. But my guess is that there's a better way to accomplish the same thing (again, off-chain transactions or using a totally different blockchain such as Ethereum, or BSV).
In fact, in "The unfuckening of OP_RETURN", Shadders shows that one can practically store up to 100kb of text in a given BSV transaction (BSV is a fork of bitcoin, which aims to align more with Satoshi's "original" vision).
The result of Shadders experiment? Well, here's the complete prequel to "Alice and Wonderland" in a single transaction, on the blockchain, forever:
Good thing Alice and Wonderland is in the public domain, right? Or... should it even matter what's "public" and what's "paywalled"?
What do you think?
submitted by mrctte to TheMotte [link] [comments]

Got tired of having to occasionally manually update ElvUI and didn't feel like using their client, so I wrote my own (kinda)!

oh god I didn't know what flair to use so I hope Tech Support's okay

Windows Release:

Source code (.py) available here:

(please don't laugh at my spaghetti I know it's ugly but it works and my friend who works at Oracle says that means it's good enough to ship)

No Mac or Linux support for the moment. Might maybe look into supporting them at some point if anybody really wants it, but I don't have a machine running either OS so I wouldn't be able to test it myself.
Over the past few days I taught myself Python by slapping together a downloader for ElvUI that automates the entire download/installation process. I spent more time making this than I will ever save from not having to download/install it manually anymore, so I decided to open-source it and post it here so others can maybe benefit from the time that I wasted!


So long as the TukUI team doesn't change the download page, or change the naming convention for either file, or send me a cease and desist, this should continue to work forever!
If I continue to update this I'd like to add a GUI of some sort so it at least looks nice. Perhaps with faction themed skins for you to look at for the 6 seconds the program's open.
Lastly, as stated at the top of the post, I don't have the means to really add proper Mac/Linux support for the moment as I can't easily test any changes, but if someone wants to fork this and add it themselves then go for it!
EDIT: 10 hours after posting I remembered to set the repo to public. My brain is nice and smooth today. Anyway in the comments some other (better) programs have been shared so you should probably use those instead but I'm still proud of my garbage so I'm keeping the post up.
submitted by TGHMatt to wow [link] [comments]

Gridcoin "Fern" Release
Finally! After over ten months of development and testing, "Fern" has arrived! This is a whopper. 240 pull requests merged. Essentially a complete rewrite that was started with the scraper (the "neural net" rewrite) in "Denise" has now been completed. Practically the ENTIRE Gridcoin specific codebase resting on top of the vanilla Bitcoin/Peercoin/Blackcoin vanilla PoS code has been rewritten. This removes the team requirement at last (see below), although there are many other important improvements besides that.
Fern was a monumental undertaking. We had to encode all of the old rules active for the v10 block protocol in new code and ensure that the new code was 100% compatible. This had to be done in such a way as to clear out all of the old spaghetti and ring-fence it with tightly controlled class implementations. We then wrote an entirely new, simplified ruleset for research rewards and reengineered contracts (which includes beacon management, polls, and voting) using properly classed code. The fundamentals of Gridcoin with this release are now on a very sound and maintainable footing, and the developers believe the codebase as updated here will serve as the fundamental basis for Gridcoin's future roadmap.
We have been testing this for MONTHS on testnet in various stages. The v10 (legacy) compatibility code has been running on testnet continuously as it was developed to ensure compatibility with existing nodes. During the last few months, we have done two private testnet forks and then the full public testnet testing for v11 code (the new protocol which is what Fern implements). The developers have also been running non-staking "sentinel" nodes on mainnet with this code to verify that the consensus rules are problem-free for the legacy compatibility code on the broader mainnet. We believe this amount of testing is going to result in a smooth rollout.
Given the amount of changes in Fern, I am presenting TWO changelogs below. One is high level, which summarizes the most significant changes in the protocol. The second changelog is the detailed one in the usual format, and gives you an inkling of the size of this release.



Note that the protocol changes will not become active until we cross the hard-fork transition height to v11, which has been set at 2053000. Given current average block spacing, this should happen around October 4, about one month from now.
Note that to get all of the beacons in the network on the new protocol, we are requiring ALL beacons to be validated. A two week (14 day) grace period is provided by the code, starting at the time of the transition height, for people currently holding a beacon to validate the beacon and prevent it from expiring. That means that EVERY CRUNCHER must advertise and validate their beacon AFTER the v11 transition (around Oct 4th) and BEFORE October 18th (or more precisely, 14 days from the actual date of the v11 transition). If you do not advertise and validate your beacon by this time, your beacon will expire and you will stop earning research rewards until you advertise and validate a new beacon. This process has been made much easier by a brand new beacon "wizard" that helps manage beacon advertisements and renewals. Once a beacon has been validated and is a v11 protocol beacon, the normal 180 day expiration rules apply. Note, however, that the 180 day expiration on research rewards has been removed with the Fern update. This means that while your beacon might expire after 180 days, your earned research rewards will be retained and can be claimed by advertising a beacon with the same CPID and going through the validation process again. In other words, you do not lose any earned research rewards if you do not stake a block within 180 days and keep your beacon up-to-date.
The transition height is also when the team requirement will be relaxed for the network.


Besides the beacon wizard, there are a number of improvements to the GUI, including new UI transaction types (and icons) for staking the superblock, sidestake sends, beacon advertisement, voting, poll creation, and transactions with a message. The main screen has been revamped with a better summary section, and better status icons. Several changes under the hood have improved GUI performance. And finally, the diagnostics have been revamped.


The wallet sync speed has been DRASTICALLY improved. A decent machine with a good network connection should be able to sync the entire mainnet blockchain in less than 4 hours. A fast machine with a really fast network connection and a good SSD can do it in about 2.5 hours. One of our goals was to reduce or eliminate the reliance on snapshots for mainnet, and I think we have accomplished that goal with the new sync speed. We have also streamlined the in-memory structures for the blockchain which shaves some memory use.
There are so many goodies here it is hard to summarize them all.
I would like to thank all of the contributors to this release, but especially thank @cyrossignol, whose incredible contributions formed the backbone of this release. I would also like to pay special thanks to @barton2526, @caraka, and @Quezacoatl1, who tirelessly helped during the testing and polishing phase on testnet with testing and repeated builds for all architectures.
The developers are proud to present this release to the community and we believe this represents the starting point for a true renaissance for Gridcoin!

Summary Changelog



Most significantly, nodes calculate research rewards directly from the magnitudes in EACH superblock between stakes instead of using a two- or three- point average based on a CPID's current magnitude and the magnitude for the CPID when it last staked. For those long-timers in the community, this has been referred to as "Superblock Windows," and was first done in proof-of-concept form by @denravonska.







As a reminder:









Detailed Changelog

[] 2020-09-03, mandatory, "Fern"





submitted by jamescowens to gridcoin [link] [comments]

Technical: The Path to Taproot Activation

Taproot! Everybody wants to have it, somebody wants to make it, nobody knows how to get it!
(If you are asking why everybody wants it, see: Technical: Taproot: Why Activate?)
(Pedants: I mostly elide over lockin times)
Briefly, Taproot is that neat new thing that gets us:
So yes, let's activate taproot!

The SegWit Wars

The biggest problem with activating Taproot is PTSD from the previous softfork, SegWit. Pieter Wuille, one of the authors of the current Taproot proposal, has consistently held the position that he will not discuss activation, and will accept whatever activation process is imposed on Taproot. Other developers have expressed similar opinions.
So what happened with SegWit activation that was so traumatic? SegWit used the BIP9 activation method. Let's dive into BIP9!

BIP9 Miner-Activated Soft Fork

Basically, BIP9 has a bunch of parameters:
Now there are other parameters (name, starttime) but they are not anywhere near as important as the above two.
A number that is not a parameter, is 95%. Basically, activation of a BIP9 softfork is considered as actually succeeding if at least 95% of blocks in the last 2 weeks had the specified bit in the nVersion set. If less than 95% had this bit set before the timeout, then the upgrade fails and never goes into the network. This is not a parameter: it is a constant defined by BIP9, and developers using BIP9 activation cannot change this.
So, first some simple questions and their answers:

The Great Battles of the SegWit Wars

SegWit not only fixed transaction malleability, it also created a practical softforkable blocksize increase that also rebalanced weights so that the cost of spending a UTXO is about the same as the cost of creating UTXOs (and spending UTXOs is "better" since it limits the size of the UTXO set that every fullnode has to maintain).
So SegWit was written, the activation was decided to be BIP9, and then.... miner signalling stalled at below 75%.
Thus were the Great SegWit Wars started.

BIP9 Feature Hostage

If you are a miner with at least 5% global hashpower, you can hold a BIP9-activated softfork hostage.
You might even secretly want the softfork to actually push through. But you might want to extract concession from the users and the developers. Like removing the halvening. Or raising or even removing the block size caps (which helps larger miners more than smaller miners, making it easier to become a bigger fish that eats all the smaller fishes). Or whatever.
With BIP9, you can hold the softfork hostage. You just hold out and refuse to signal. You tell everyone you will signal, if and only if certain concessions are given to you.
This ability by miners to hold a feature hostage was enabled because of the miner-exit allowed by the timeout on BIP9. Prior to that, miners were considered little more than expendable security guards, paid for the risk they take to secure the network, but not special in the grand scheme of Bitcoin.

Covert ASICBoost

ASICBoost was a novel way of optimizing SHA256 mining, by taking advantage of the structure of the 80-byte header that is hashed in order to perform proof-of-work. The details of ASICBoost are out-of-scope here but you can read about it elsewhere
Here is a short summary of the two types of ASICBoost, relevant to the activation discussion.
Now, "overt" means "obvious", while "covert" means hidden. Overt ASICBoost is obvious because nVersion bits that are not currently in use for BIP9 activations are usually 0 by default, so setting those bits to 1 makes it obvious that you are doing something weird (namely, Overt ASICBoost). Covert ASICBoost is non-obvious because the order of transactions in a block are up to the miner anyway, so the miner rearranging the transactions in order to get lower power consumption is not going to be detected.
Unfortunately, while Overt ASICBoost was compatible with SegWit, Covert ASICBoost was not. This is because, pre-SegWit, only the block header Merkle tree committed to the transaction ordering. However, with SegWit, another Merkle tree exists, which commits to transaction ordering as well. Covert ASICBoost would require more computation to manipulate two Merkle trees, obviating the power benefits of Covert ASICBoost anyway.
Now, miners want to use ASICBoost (indeed, about 60->70% of current miners probably use the Overt ASICBoost nowadays; if you have a Bitcoin fullnode running you will see the logs with lots of "60 of last 100 blocks had unexpected versions" which is exactly what you would see with the nVersion manipulation that Overt ASICBoost does). But remember: ASICBoost was, at around the time, a novel improvement. Not all miners had ASICBoost hardware. Those who did, did not want it known that they had ASICBoost hardware, and wanted to do Covert ASICBoost!
But Covert ASICBoost is incompatible with SegWit, because SegWit actually has two Merkle trees of transaction data, and Covert ASICBoost works by fudging around with transaction ordering in a block, and recomputing two Merkle Trees is more expensive than recomputing just one (and loses the ASICBoost advantage).
Of course, those miners that wanted Covert ASICBoost did not want to openly admit that they had ASICBoost hardware, they wanted to keep their advantage secret because miners are strongly competitive in a very tight market. And doing ASICBoost Covertly was just the ticket, but they could not work post-SegWit.
Fortunately, due to the BIP9 activation process, they could hold SegWit hostage while covertly taking advantage of Covert ASICBoost!

UASF: BIP148 and BIP8

When the incompatibility between Covert ASICBoost and SegWit was realized, still, activation of SegWit stalled, and miners were still not openly claiming that ASICBoost was related to non-activation of SegWit.
Eventually, a new proposal was created: BIP148. With this rule, 3 months before the end of the SegWit timeout, nodes would reject blocks that did not signal SegWit. Thus, 3 months before SegWit timeout, BIP148 would force activation of SegWit.
This proposal was not accepted by Bitcoin Core, due to the shortening of the timeout (it effectively times out 3 months before the initial SegWit timeout). Instead, a fork of Bitcoin Core was created which added the patch to comply with BIP148. This was claimed as a User Activated Soft Fork, UASF, since users could freely download the alternate fork rather than sticking with the developers of Bitcoin Core.
Now, BIP148 effectively is just a BIP9 activation, except at its (earlier) timeout, the new rules would be activated anyway (instead of the BIP9-mandated behavior that the upgrade is cancelled at the end of the timeout).
BIP148 was actually inspired by the BIP8 proposal (the link here is a historical version; BIP8 has been updated recently, precisely in preparation for Taproot activation). BIP8 is basically BIP9, but at the end of timeout, the softfork is activated anyway rather than cancelled.
This removed the ability of miners to hold the softfork hostage. At best, they can delay the activation, but not stop it entirely by holding out as in BIP9.
Of course, this implies risk that not all miners have upgraded before activation, leading to possible losses for SPV users, as well as again re-pressuring miners to signal activation, possibly without the miners actually upgrading their software to properly impose the new softfork rules.

BIP91, SegWit2X, and The Aftermath

BIP148 inspired countermeasures, possibly from the Covert ASiCBoost miners, possibly from concerned users who wanted to offer concessions to miners. To this day, the common name for BIP148 - UASF - remains an emotionally-charged rallying cry for parts of the Bitcoin community.
One of these was SegWit2X. This was brokered in a deal between some Bitcoin personalities at a conference in New York, and thus part of the so-called "New York Agreement" or NYA, another emotionally-charged acronym.
The text of the NYA was basically:
  1. Set up a new activation threshold at 80% signalled at bit 4 (vs bit 1 for SegWit).
    • When this 80% signalling was reached, miners would require that bit 1 for SegWit be signalled to achive the 95% activation needed for SegWit.
  2. If the bit 4 signalling reached 80%, increase the block weight limit from the SegWit 4000000 to the SegWit2X 8000000, 6 months after bit 1 activation.
The first item above was coded in BIP91.
Unfortunately, if you read the BIP91, independently of NYA, you might come to the conclusion that BIP91 was only about lowering the threshold to 80%. In particular, BIP91 never mentions anything about the second point above, it never mentions that bit 4 80% threshold would also signal for a later hardfork increase in weight limit.
Because of this, even though there are claims that NYA (SegWit2X) reached 80% dominance, a close reading of BIP91 shows that the 80% dominance was only for SegWit activation, without necessarily a later 2x capacity hardfork (SegWit2X).
This ambiguity of bit 4 (NYA says it includes a 2x capacity hardfork, BIP91 says it does not) has continued to be a thorn in blocksize debates later. Economically speaking, Bitcoin futures between SegWit and SegWit2X showed strong economic dominance in favor of SegWit (SegWit2X futures were traded at a fraction in value of SegWit futures: I personally made a tidy but small amount of money betting against SegWit2X in the futures market), so suggesting that NYA achieved 80% dominance even in mining is laughable, but the NYA text that ties bit 4 to SegWit2X still exists.
Historically, BIP91 triggered which caused SegWit to activate before the BIP148 shorter timeout. BIP148 proponents continue to hold this day that it was the BIP148 shorter timeout and no-compromises-activate-on-August-1 that made miners flock to BIP91 as a face-saving tactic that actually removed the second clause of NYA. NYA supporters keep pointing to the bit 4 text in the NYA and the historical activation of BIP91 as a failed promise by Bitcoin developers.

Taproot Activation Proposals

There are two primary proposals I can see for Taproot activation:
  1. BIP8.
  2. Modern Softfork Activation.
We have discussed BIP8: roughly, it has bit and timeout, if 95% of miners signal bit it activates, at the end of timeout it activates. (EDIT: BIP8 has had recent updates: at the end of timeout it can now activate or fail. For the most part, in the below text "BIP8", means BIP8-and-activate-at-timeout, and "BIP9" means BIP8-and-fail-at-timeout)
So let's take a look at Modern Softfork Activation!

Modern Softfork Activation

This is a more complex activation method, composed of BIP9 and BIP8 as supcomponents.
  1. First have a 12-month BIP9 (fail at timeout).
  2. If the above fails to activate, have a 6-month discussion period during which users and developers and miners discuss whether to continue to step 3.
  3. Have a 24-month BIP8 (activate at timeout).
The total above is 42 months, if you are counting: 3.5 years worst-case activation.
The logic here is that if there are no problems, BIP9 will work just fine anyway. And if there are problems, the 6-month period should weed it out. Finally, miners cannot hold the feature hostage since the 24-month BIP8 period will exist anyway.

PSA: Being Resilient to Upgrades

Software is very birttle.
Anyone who has been using software for a long time has experienced something like this:
  1. You hear a new version of your favorite software has a nice new feature.
  2. Excited, you install the new version.
  3. You find that the new version has subtle incompatibilities with your current workflow.
  4. You are sad and downgrade to the older version.
  5. You find out that the new version has changed your files in incompatible ways that the old version cannot work with anymore.
  6. You tearfully reinstall the newer version and figure out how to get your lost productivity now that you have to adapt to a new workflow
If you are a technically-competent user, you might codify your workflow into a bunch of programs. And then you upgrade one of the external pieces of software you are using, and find that it has a subtle incompatibility with your current workflow which is based on a bunch of simple programs you wrote yourself. And if those simple programs are used as the basis of some important production system, you hve just screwed up because you upgraded software on an important production system.
And well, one of the issues with new softfork activation is that if not enough people (users and miners) upgrade to the newest Bitcoin software, the security of the new softfork rules are at risk.
Upgrading software of any kind is always a risk, and the more software you build on top of the software-being-upgraded, the greater you risk your tower of software collapsing while you change its foundations.
So if you have some complex Bitcoin-manipulating system with Bitcoin somewhere at the foundations, consider running two Bitcoin nodes:
  1. One is a "stable-version" Bitcoin node. Once it has synced, set it up to connect=x.x.x.x to the second node below (so that your ISP bandwidth is only spent on the second node). Use this node to run all your software: it's a stable version that you don't change for long periods of time. Enable txiindex, disable pruning, whatever your software needs.
  2. The other is an "always-up-to-date" Bitcoin Node. Keep its stoarge down with pruning (initially sync it off the "stable-version" node). You can't use blocksonly if your "stable-version" node needs to send transactions, but otherwise this "always-up-to-date" Bitcoin node can be kept as a low-resource node, so you can run both nodes in the same machine.
When a new Bitcoin version comes up, you just upgrade the "always-up-to-date" Bitcoin node. This protects you if a future softfork activates, you will only receive valid Bitcoin blocks and transactions. Since this node has nothing running on top of it, it is just a special peer of the "stable-version" node, any software incompatibilities with your system software do not exist.
Your "stable-version" Bitcoin node remains the same version until you are ready to actually upgrade this node and are prepared to rewrite most of the software you have running on top of it due to version compatibility problems.
When upgrading the "always-up-to-date", you can bring it down safely and then start it later. Your "stable-version" wil keep running, disconnected from the network, but otherwise still available for whatever queries. You do need some system to stop the "always-up-to-date" node if for any reason the "stable-version" goes down (otherwisee if the "always-up-to-date" advances its pruning window past what your "stable-version" has, the "stable-version" cannot sync afterwards), but if you are technically competent enough that you need to do this, you are technically competent enough to write such a trivial monitor program (EDIT: gmax notes you can adjust the pruning window by RPC commands to help with this as well).
This recommendation is from gmaxwell on IRC, by the way.
submitted by almkglor to Bitcoin [link] [comments]

Making A Living From Bitcoin

If you are like me, then you are probably always looking for new ways to generate income. There are always new opportunities out there to make a quick buck, however, I try and be selective and do extensive research into the opportunities I spot. I have recently become very interested in the opportunities that Bitcoin trading presents. Increasing your streams of passive income through a diverse range of methods can start to add up to a significant amount each month. Here are a few ways to start making money through Bitcoin.
Mining Bitcoin
Essentially mining means using computing power to secure a network to receive Bitcoin rewards. It is the oldest form of earning passive income through Bitcoin as it doesn’t require you to have cryptocurrency holdings. In the early days, this method was a viable solution, however, as the network hash rate increase most miners shifted to using more powerful Graphics Processing Units. Due to the vast increase in competition mining became the playing field of Application-Specific Integrated Circuits (ASICs) - electronics that use mining chips tailor-made for this specific purpose. Nowadays setting up and maintaining mining equipment requires substantial investment and technical expertise – but it's worth it if you happen to fit the criteria. Not to mention the cooling costs associated with running a machine powerful enough to mine Bitcoin.
Staking is a less resource-intensive alternative to mining, involving keeping funds in a suitable wallet and performing various network functions to receive staking rewards (i.e. Bitcoin). Usually, staking involves establishing a staking wallet and simply holding the coins. In other cases, the process will involve a staking pool. Some exchanges will do all this for you – all you have to do it keep your tokens on the exchange and all the technical requirements will be taken care of. This is a great way to increase your Bitcoin holdings with minimal efforts.
Lending is a completely passive method to earn interest on your Bitcoin holdings. There are several peer-to-peer lending platforms available that enable you to lock up your funds for a period of time to later collect interest payments. The interest rate could either be set for the platform or based on the current market rate. This method is ideal for those looking for long term rewards, however, it is worth noting that locking your funds in a smart contact always carries the risk of bugs.
Finding a Bitcoin Trading Company
For those who are less technically inclined and don’t have a firm grasp of how Bitcoin trading works, there is always the opportunity of finding a company that will trade on your behalf. The issue with this is that there are many seedy companies who claim to do this but then end up ripping you off. In order to have peace of mind, you need to find a Bitcoin trading company that understands the market and is reputable enough. I stumbled across Mirror Trading International, a company that operates out of South Africa. What immediately stood out for me was that they were transparent and professional in their engagements. Daily profits are paid on the days where there are profits recorded. In addition to this, they have made the entire registration and withdrawal process as simple as possible. All you have to do is simply fund your account with the minimum fund value and you can start earning. If you do need to access the funds, then this is a simple process that you have full control of.
I would suggest everyone to do their research and keep an open mind. The thousands of testimonials, along with their members from all across the world is testament that they are a legitimate company that is sustainable.
submitted by DavidDekel2020 to GrowBitcoin [link] [comments]

[OWL WATCH] Waiting for "IOTA TIME" 20; Hans's re-defined directions for DLT

Disclaimer: This is my editing, so there could be some misunderstandings...
wellwho오늘 오후 4:50
u/Ben Royce****how far is society2 from having something clickable powered by IOTA?
Ben Royce오늘 오후 4:51
demo of basic tech late sep/ early oct. MVP early 2021
Colored coins are the most misunderstood upcoming feature of the IOTA protocol. A lot of people see them just as a competitor to ERC-20 tokens on ETH and therefore a way of tokenizing things on IOTA, but they are much more important because they enable "consensus on data".
All this stuff already works on neblio but decentralized and scaling to 3500 tps
Neblio has 8 mb blocks with 30 seconds blocktime. This is a throughput of 8 mb / 30 seconds = 267 kb per second. Transactions are 401+ bytes which means that throughput is 267 kb / 401 bytes = 665 TPS. IOTA is faster, feeless and will get even faster with the next update ...
Which DLT would be more secure? One that is collaboratively validated by the economic actors of the world (coporations, companies, foundations, states, people) or one that is validated by an anonymous group of wealthy crypto holders?
The problem with current DLTs is that we use protection mechanisms like Proof of Work and Proof of Stake that are inherently hard to shard. The more shards you have, the more you have to distribute your hashing power and your stake and the less secure the system becomes.
Real world identities (i.e. all the big economic actors) however could shard into as many shards as necessary without making the system less secure. Todays DLTs waste trust in the same way as PoW wastes energy.
Is a secure money worth anything if you can't trust the economic actors that you would buy stuff from? If you buy a car from Volkswagen and they just beat you up and throw you out of the shop after you payed then a secure money won't be useful either :P
**I believe that if you want to make DLT work and be successful then we need to ultimately incorporate things like trust in entities into the technology.**Examples likes wirecard show that trusting a single company is problematic but trusting the economy as a whole should be at ...
**... least as secure as todays DLTs.**And as soon as you add sharding it will be orders of magnitude more secure. DLT has failed to deliver because people have tried to build a system in vacuum that completely ignores things that already exist and that you can leverage on.
Blockchain is a bit like people sitting in a room, trying to communicate through BINGO sheets. While they talk, they write down some of the things that have been said and as soon as one screams BINGO! he hands around his sheet to inform everybody about what has been said.
If you think that this is the most efficient form of communication for people sitting in the same room and the answer to scalability is to make bigger BINGO sheets or to allow people to solve the puzzle faster then you will most probably never understand what IOTA is working on.
**Blockchain does not work with too many equally weighted validators.****If 400 validators produce a validating statement (block) at the same time then only one can survive as part of a longest chain.**IOTA is all about collaborative validation.
**Another problem of blockchain is that every transaction gets sent twice through the network. Once from the nodes to the miners and a 2nd time from the miners as part of a block.**Blockchain will therefore always only be able to use 50% of the network throughput.
And****the last problem is that you can not arbitrarily decrease the time between blocks as it breaks down if the time between blocks gets smaller than the average network delay. The idle time between blocks is precious time that could be used for processing transactions.
I am not talking about a system with a fixed number of validators but one that is completely open and permissionless where any new company can just spin up a node and take part in the network.
Proof of Work and Proof of Stake are both centralizing sybil-protection mechanism. I don't think that Satoshi wanted 14 mining pools to run the network.
And "economic clustering" was always the "end game" of IOTA.
**Using Proof of Stake is not trustless. Proof of Stake means you trust the richest people and hope that they approve your transactions. The rich are getting richer (through your fees) and you are getting more and more dependant on them.**Is that your vision of the future?

Please read again exactly what I wrote. I have not spoken of introducing governance by large companies, nor have I said that IOTA should be permissioned. We aim for a network with millions or even billions of nodes.

That can't work at all with a permissioned ledger - who should then drop off all these devices or authorize them to participate in the network? My key message was the following: Proof of Work and Proof of Stake will always be if you split them up via sharding ...

... less secure because you simply need fewer coins or less hash power to have the majority of the votes in a shard. This is not the case with trust in society and the economy. When all companies in the world jointly secure a DLT ...

... then these companies could install any number of servers in any number of shards without compromising security, because "trust" does not become less just because they operate several servers. First of all, that is a fact and nothing else.

Proof of Work and Proof of Stake are contrary to the assumption of many not "trustless" but follow the maxim: "In the greed of miners we trust!" The basic assumption that the miners do not destroy the system that generates income for them is fundamental here for the ...

... security of every DLT. I think a similar assumption would still be correct for the economy as a whole: The companies of the world (and not just the big ones) would not destroy the system with which their customers pay them. In this respect, a system would be ...

... which is validated by society and the economy as a whole probably just as "safely" as a system which is validated by a few anonymous miners. Why a small elite of miners should be better validators than any human and ...

... To be honest, companies in this world do not open up to me. As already written in my other thread, safe money does not bring you anything if you have to assume that Volkswagen will beat you up and throw you out of the store after you ...

... paid for a car. The thoughts I discussed say nothing about the immediate future of IOTA (we use for Coordicide mana) but rather speak of a world where DLT has already become an integral part of our lives and we ...

... a corresponding number of companies, non-profit organizations and people have used DLT and where such a system could be implemented. The point here is not to create a governance solution that in any way influences the development of technology ...

... or have to give nodes their OK first, but about developing a system that enables people to freely choose the validators they trust. For example, you can also declare your grandma to be a validator when you install your node or your ...

... local supermarket. Economic relationships in the real world usually form a close-knit network and it doesn't really matter who you follow as long as the majority is honest. I also don't understand your criticism of censorship, because something like that in IOTA ...

... is almost impossible. Each transaction confirms two other transactions which is growing exponentially. If someone wanted to ignore a transaction, he would have to ignore an exponential number of other transactions after a very short time. In contrast to blockchain ...

... validators in IOTA do not decide what is included in the ledger, but only decide which of several double spends should be confirmed. Honest transactions are confirmed simply by having other transactions reference them ...

... and the "validators" are not even asked. As for the "dust problem", this is indeed something that is a bigger problem for IOTA than for other DLTs because we have no fees, but it is also not an unsolvable problem. Bitcoin initially has a ...

Solved similar problem by declaring outputs with a minimum amount of 5430 satoshis as invalid (…). A similar solution where an address must contain a minimum amount is also conceivable for IOTA and we are discussing ...

... several possibilities (including compressing dust using cryptographic methods). Contrary to your assumption, checking such a minimum amount is not slow but just as fast as checking a normal transaction. And mine ...

... In my opinion this is no problem at all for IOTA's use case. The important thing is that you can send small amounts, but after IOTA is feeless it is also okay to expect the recipients to regularly send their payments on a ...

... merge address. The wallets already do this automatically (sweeping) and for machines it is no problem to automate this process. So far this was not a problem because the TPS were limited but with the increased TPS throughput of ...

... Chrysalis it becomes relevant and appropriate solutions are discussed and then implemented accordingly. I think that was the most important thing first and if you have further questions just write :)

And to be very clear! I really appreciate you and your questions and don't see this as an attack at all! People who see such questions as inappropriate criticism should really ask whether they are still objective. I have little time at the moment because ...

... my girlfriend is on tour and has to take care of our daughter, but as soon as she is back we can discuss these things in a video. I think that the concept of including the "real world" in the concepts of DLT is really exciting and ...

... that would certainly be exciting to discuss in a joint video. But again, that's more of a vision than a specific plan for the immediate future. This would not work with blockchain anyway but IOTA would be compatible so why not think about such things.

All good my big one :P But actually not that much has changed. There has always been the concept of "economic clustering" which is basically based on similar ideas. We are just now able to implement things like this for the first time.

Exactly. It would mean that addresses "cost" something but I would rather pay a few cents than fees for each transaction. And you can "take" this minimum amount with you every time you change to a new address.

All good my big one :P But actually not that much has changed. There has always been the concept of "economic clustering" which is basically based on similar ideas. We are just now able to implement things like this for the first time.

Relax오늘 오전 1:17
Btw. Hans (sorry for interrupting this convo) but what make people say that IOTA is going the permissioned way because of your latest tweets? I don't get why some people are now forecasting that... Is it because of missing specs or do they just don't get the whole idea?

Hans Moog [IF]오늘 오전 1:20
its bullshit u/Relaxan identity based system would still be open and permissionless where everybody can choose the actors that they deem trustworthy themselves but thats anyway just sth that would be applicable with more adoption
[오전 1:20]
for now we use mana as a predecessor to an actual reputation system

Sissors오늘 오전 1:31
If everybody has to choose actors they deem trustworthy, is it still permissionless? Probably will become a bit a semantic discussion, but still

Hans Moog [IF]오늘 오전 1:34
Of course its permissionless you can follow your grandma if you want to :p

Sissors오늘 오전 1:36
Well sure you can, but you will need to follow something which has a majority of the voting power in the network. Nice that you follow your grandma, but if others dont, her opinion (or well her nodes opinion) is completely irrelevant

Hans Moog [IF]오늘 오전 1:37
You would ideally follow the people that are trustworthy rather than your local drug dealers yeah

Sissors오늘 오전 1:38
And tbh, sure if you do it like that is easy. If you just make the users responsible for only connection to trustworthy nodes

Hans Moog [IF]오늘 오전 1:38
And if your grandma follows her supermarket and some other people she deems trustworthy then thats fine as well
[오전 1:38]
+ you dont have just 1 actor that you follow

Sissors오늘 오전 1:38
No, you got a large list, since yo uwant to follow those which actually matter. So you jsut download a standard list from the internet

Hans Moog [IF]오늘 오전 1:39
You can do that
[오전 1:39]
Is bitcoin permissionless? Should we both try to become miners?
[오전 1:41]
I mean miners that actually matter and not find a block every 10 trillion years 📷
[오전 1:42]
If you would want to become a validator then you would need to build up trust among other people - but anybody can still run a node and issue transactions unlike in hashgraph where you are not able to run your own nodes(수정됨)
[오전 1:48]
Proof of Stake is also not trustless - it just has a builtin mechanism that downloads the trusted people from the blockchain itself (the richest dudes)

Sissors오늘 오전 1:52
I think most agree it would be perfect if every person had one vote. Which is pr oblematic to implement of course. But I really wonder if the solution is to just let users decide who to trust. At the very least I expect a quite centralized network

Hans Moog [IF]오늘 오전 1:53
of course even a trust based system would to a certain degree be centralized as not every person is equally trustworthy as for example a big cooperation
[오전 1:53]
but I think its gonna be less centralized than PoS or PoW
[오전 1:53]
but anyway its sth for "after coordicide"
[오전 1:54]
there are not enough trusted entities that are using DLT, yet to make such a system work reasonably well
[오전 1:54]
I think the reason why blockchain has not really started to look into these kind of concepts is because blockchain doesnt work with too many equally weighted validators
[오전 1:56]
I believe that DLT is only going to take over the world if it is actually "better" than existing systems and with better I mean cheaper, more secure and faster and PoS and PoW will have a very hard time to deliver that
[오전 1:56]
especially if you consider that its not only going to settle value transfers

Relax오늘 오전 1:57
I like this clear statements, it makes it really clear that DLT is still in its infancy

Hans Moog [IF]오늘 오전 1:57
currently bank transfers are order of magnitude cheaper than BTC or ETH transactions

Hans Moog [IF]오늘 오전 1:57
and we you think that people will adopt it just because its crypto then I think we are mistaken
[오전 1:57]
The tech needs to actually solve a problem
[오전 1:57]
and tbh. currently people use PayPal and other companies to settle their payments
[오전 1:58]
having a group of the top 500 companies run such a service together is already much better(수정됨)
[오전 1:58]
especially if its fast and feeless
[오전 2:02]
and the more people use it, the more decentralized it actually becomes
[오전 2:02]
because you have more trustworthy entities to choose of

Evaldas [IF]오늘 오전 2:08
"in the greed of miners we trust"

submitted by btlkhs to Iota [link] [comments]

How EpiK Protocol “Saved the Miners” from Filecoin with the E2P Storage Model?

How EpiK Protocol “Saved the Miners” from Filecoin with the E2P Storage Model?
On October 20, Eric Yao, Head of EpiK China, and Leo, Co-Founder & CTO of EpiK, visited Deep Chain Online Salon, and discussed “How EpiK saved the miners eliminated by Filecoin by launching E2P storage model”. ‘?” The following is a transcript of the sharing.
Sharing Session
Eric: Hello, everyone, I’m Eric, graduated from School of Information Science, Tsinghua University. My Master’s research was on data storage and big data computing, and I published a number of industry top conference papers.
Since 2013, I have invested in Bitcoin, Ethereum, Ripple, Dogcoin, EOS and other well-known blockchain projects, and have been settling in the chain circle as an early technology-based investor and industry observer with 2 years of blockchain experience. I am also a blockchain community initiator and technology evangelist
Leo: Hi, I’m Leo, I’m the CTO of EpiK. Before I got involved in founding EpiK, I spent 3 to 4 years working on blockchain, public chain, wallets, browsers, decentralized exchanges, task distribution platforms, smart contracts, etc., and I’ve made some great products. EpiK is an answer to the question we’ve been asking for years about how blockchain should be landed, and we hope that EpiK is fortunate enough to be an answer for you as well.
Q & A
Deep Chain Finance:
First of all, let me ask Eric, on October 15, Filecoin’s main website launched, which aroused everyone’s attention, but at the same time, the calls for fork within Filecoin never stopped. The EpiK protocol is one of them. What I want to know is, what kind of project is EpiK Protocol? For what reason did you choose to fork in the first place? What are the differences between the forked project and Filecoin itself?
First of all, let me answer the first question, what kind of project is EpiK Protocol.
With the Fourth Industrial Revolution already upon us, comprehensive intelligence is one of the core goals of this stage, and the key to comprehensive intelligence is how to make machines understand what humans know and learn new knowledge based on what they already know. And the knowledge graph scale is a key step towards full intelligence.
In order to solve the many challenges of building large-scale knowledge graphs, the EpiK Protocol was born. EpiK Protocol is a decentralized, hyper-scale knowledge graph that organizes and incentivizes knowledge through decentralized storage technology, decentralized autonomous organizations, and generalized economic models. Members of the global community will expand the horizons of artificial intelligence into a smarter future by organizing all areas of human knowledge into a knowledge map that will be shared and continuously updated for the eternal knowledge vault of humanity
And then, for what reason was the fork chosen in the first place?
EpiK’s project founders are all senior blockchain industry practitioners and have been closely following the industry development and application scenarios, among which decentralized storage is a very fresh application scenario.
However, in the development process of Filecoin, the team found that due to some design mechanisms and historical reasons, the team found that Filecoin had some deviations from the original intention of the project at that time, such as the overly harsh penalty mechanism triggered by the threat to weaken security, and the emergence of the computing power competition leading to the emergence of computing power monopoly by large miners, thus monopolizing the packaging rights, which can be brushed with computing power by uploading useless data themselves.
The emergence of these problems will cause the data environment on Filecoin to get worse and worse, which will lead to the lack of real value of the data in the chain, high data redundancy, and the difficulty of commercializing the project to land.
After paying attention to the above problems, the project owner proposes to introduce multi-party roles and a decentralized collaboration platform DAO to ensure the high value of the data on the chain through a reasonable economic model and incentive mechanism, and store the high-value data: knowledge graph on the blockchain through decentralized storage, so that the lack of value of the data on the chain and the monopoly of large miners’ computing power can be solved to a large extent.
Finally, what differences exist between the forked project and Filecoin itself?
On the basis of the above-mentioned issues, EpiK’s design is very different from Filecoin, first of all, EpiK is more focused in terms of business model, and it faces a different market and track from the cloud storage market where Filecoin is located because decentralized storage has no advantage over professional centralized cloud storage in terms of storage cost and user experience.
EpiK focuses on building a decentralized knowledge graph, which reduces data redundancy and safeguards the value of data in the distributed storage chain while preventing the knowledge graph from being tampered with by a few people, thus making the commercialization of the entire project reasonable and feasible.
From the perspective of ecological construction, EpiK treats miners more friendly and solves the pain point of Filecoin to a large extent, firstly, it changes the storage collateral and commitment collateral of Filecoin to one-time collateral.
Miners participating in EpiK Protocol are only required to pledge 1000 EPK per miner, and only once before mining, not in each sector.
What is the concept of 1000 EPKs, you only need to participate in pre-mining for about 50 days to get this portion of the tokens used for pledging. The EPK pre-mining campaign is currently underway, and it runs from early September to December, with a daily release of 50,000 ERC-20 standard EPKs, and the pre-mining nodes whose applications are approved will divide these tokens according to the mining ratio of the day, and these tokens can be exchanged 1:1 directly after they are launched on the main network. This move will continue to expand the number of miners eligible to participate in EPK mining.
Secondly, EpiK has a more lenient penalty mechanism, which is different from Filecoin’s official consensus, storage and contract penalties, because the protocol can only be uploaded by field experts, which is the “Expert to Person” mode. Every miner needs to be backed up, which means that if one or more miners are offline in the network, it will not have much impact on the network, and the miner who fails to upload the proof of time and space in time due to being offline will only be forfeited by the authorities for the effective computing power of this sector, not forfeiting the pledged coins.
If the miner can re-submit the proof of time and space within 28 days, he will regain the power.
Unlike Filecoin’s 32GB sectors, EpiK’s encapsulated sectors are smaller, only 8M each, which will solve Filecoin’s sector space wastage problem to a great extent, and all miners have the opportunity to complete the fast encapsulation, which is very friendly to miners with small computing power.
The data and quality constraints will also ensure that the effective computing power gap between large and small miners will not be closed.
Finally, unlike Filecoin’s P2P data uploading model, EpiK changes the data uploading and maintenance to E2P uploading, that is, field experts upload and ensure the quality and value of the data on the chain, and at the same time introduce the game relationship between data storage roles and data generation roles through a rational economic model to ensure the stability of the whole system and the continuous high-quality output of the data on the chain.
Deep Chain Finance:
Eric, on the eve of Filecoin’s mainline launch, issues such as Filecoin’s pre-collateral have aroused a lot of controversy among the miners. In your opinion, what kind of impact will Filecoin bring to itself and the whole distributed storage ecosystem after it launches? Do you think that the current confusing FIL prices are reasonable and what should be the normal price of FIL?
Filecoin mainnet has launched and many potential problems have been exposed, such as the aforementioned high pre-security problem, the storage resource waste and computing power monopoly caused by unreasonable sector encapsulation, and the harsh penalty mechanism, etc. These problems are quite serious, and will greatly affect the development of Filecoin ecology.
These problems are relatively serious, and will greatly affect the development of Filecoin ecology, here are two examples to illustrate. For example, the problem of big miners computing power monopoly, now after the big miners have monopolized computing power, there will be a very delicate state — — the miners save a file data with ordinary users. There is no way to verify this matter in the chain, whether what he saved is uploaded by himself or someone else. And after the big miners have monopolized computing power, there will be a very delicate state — — the miners will save a file data with ordinary users, there is no way to verify this matter in the chain, whether what he saved is uploaded by himself or someone else. Because I can fake another identity to upload data for myself, but that leads to the fact that for any miner I go to choose which data to save. I have only one goal, and that is to brush my computing power and how fast I can brush my computing power.
There is no difference between saving other people’s data and saving my own data in the matter of computing power. When I save someone else’s data, I don’t know that data. Somewhere in the world, the bandwidth quality between me and him may not be good enough.
The best option is to store my own local data, which makes sense, and that results in no one being able to store data on the chain at all. They only store their own data, because it’s the most economical for them, and the network has essentially no storage utility, no one is providing storage for the masses of retail users.
The harsh penalty mechanism will also severely deplete the miner’s profits, because DDOS attacks are actually a very common attack technique for the attacker, and for a big miner, he can get a very high profit in a short period of time if he attacks other customers, and this thing is a profitable thing for all big miners.
Now as far as the status quo is concerned, the vast majority of miners are actually not very well maintained, so they are not very well protected against these low-DDOS attacks. So the penalty regime is grim for them.
The contradiction between the unreasonable system and the demand will inevitably lead to the evolution of the system in a more reasonable direction, so there will be many forked projects that are more reasonable in terms of mechanism, thus attracting Filecoin miners and a diversion of storage power.
Since each project is in the field of decentralized storage track, the demand for miners is similar or even compatible with each other, so miners will tend to fork the projects with better economic benefits and business scenarios, so as to filter out the projects with real value on the ground.
For the chaotic FIL price, because FIL is also a project that has gone through several years, carrying too many expectations, so it can only be said that the current situation has its own reasons for existence. As for the reasonable price of FIL there is no way to make a prediction because in the long run, it is necessary to consider the commercialization of the project to land and the value of the actual chain of data. In other words, we need to keep observing whether Filecoin will become a game of computing power or a real value carrier.
Deep Chain Finance:
Leo, we just mentioned that the pre-collateral issue of Filecoin caused the dissatisfaction of miners, and after Filecoin launches on the main website, the second round of space race test coins were directly turned into real coins, and the official selling of FIL hit the market phenomenon, so many miners said they were betrayed. What I want to know is, EpiK’s main motto is “save the miners eliminated by Filecoin”, how to deal with the various problems of Filecoin, and how will EpiK achieve “save”?
Originally Filecoin’s tacit approval of the computing power makeup behavior was to declare that the official directly chose to abandon the small miners. And this test coin turned real coin also hurt the interests of the loyal big miners in one cut, we do not know why these low-level problems, we can only regret.
EpiK didn’t do it to fork Filecoin, but because EpiK to build a shared knowledge graph ecology, had to integrate decentralized storage in, so the most hardcore Filecoin’s PoRep and PoSt decentralized verification technology was chosen. In order to ensure the quality of knowledge graph data, EpiK only allows community-voted field experts to upload data, so EpiK naturally prevents miners from making up computing power, and there is no reason for the data that has no value to take up such an expensive decentralized storage resource.
With the inability to make up computing power, the difference between big miners and small miners is minimal when the amount of knowledge graph data is small.
We can’t say that we can save the big miners, but we are definitely the optimal choice for the small miners who are currently in the market to be eliminated by Filecoin.
Deep Chain Finance:
Let me ask Eric: According to EpiK protocol, EpiK adopts the E2P model, which allows only experts in the field who are voted to upload their data. This is very different from Filecoin’s P2P model, which allows individuals to upload data as they wish. In your opinion, what are the advantages of the E2P model? If only voted experts can upload data, does that mean that the EpiK protocol is not available to everyone?
First, let me explain the advantages of the E2P model over the P2P model.
There are five roles in the DAO ecosystem: miner, coin holder, field expert, bounty hunter and gateway. These five roles allocate the EPKs generated every day when the main network is launched.
The miner owns 75% of the EPKs, the field expert owns 9% of the EPKs, and the voting user shares 1% of the EPKs.
The other 15% of the EPK will fluctuate based on the daily traffic to the network, and the 15% is partly a game between the miner and the field expert.
The first describes the relationship between the two roles.
The first group of field experts are selected by the Foundation, who cover different areas of knowledge (a wide range of knowledge here, including not only serious subjects, but also home, food, travel, etc.) This group of field experts can recommend the next group of field experts, and the recommended experts only need to get 100,000 EPK votes to become field experts.
The field expert’s role is to submit high-quality data to the miner, who is responsible for encapsulating this data into blocks.
Network activity is judged by the amount of EPKs pledged by the entire network for daily traffic (1 EPK = 10 MB/day), with a higher percentage indicating higher data demand, which requires the miner to increase bandwidth quality.
If the data demand decreases, this requires field experts to provide higher quality data. This is similar to a library with more visitors needing more seats, i.e., paying the miner to upgrade the bandwidth.
When there are fewer visitors, more money is needed to buy better quality books to attract visitors, i.e., money for bounty hunters and field experts to generate more quality knowledge graph data. The game between miners and field experts is the most important game in the ecosystem, unlike the game between the authorities and big miners in the Filecoin ecosystem.
The game relationship between data producers and data storers and a more rational economic model will inevitably lead to an E2P model that generates stored on-chain data of much higher quality than the P2P model, and the quality of bandwidth for data access will be better than the P2P model, resulting in greater business value and better landing scenarios.
I will then answer the question of whether this means that the EpiK protocol will not be universally accessible to all.
The E2P model only qualifies the quality of the data generated and stored, not the roles in the ecosystem; on the contrary, with the introduction of the DAO model, the variety of roles introduced in the EpiK ecosystem (which includes the roles of ordinary people) is not limited. (Bounty hunters who can be competent in their tasks) gives roles and possibilities for how everyone can participate in the system in a more logical way.
For example, a miner with computing power can provide storage, a person with a certain domain knowledge can apply to become an expert (this includes history, technology, travel, comics, food, etc.), and a person willing to mark and correct data can become a bounty hunter.
The presence of various efficient support tools from the project owner will lower the barriers to entry for various roles, thus allowing different people to do their part in the system and together contribute to the ongoing generation of a high-quality decentralized knowledge graph.
Deep Chain Finance:
Leo, some time ago, EpiK released a white paper and an economy whitepaper, explaining the EpiK concept from the perspective of technology and economy model respectively. What I would like to ask is, what are the shortcomings of the current distributed storage projects, and how will EpiK protocol be improved?
Distributed storage can easily be misunderstood as those of Ali’s OceanDB, but in the field of blockchain, we should focus on decentralized storage first.
There is a big problem with the decentralized storage on the market now, which is “why not eat meat porridge”.
How to understand it? Decentralized storage is cheaper than centralized storage because of its technical principle, and if it is, the centralized storage is too rubbish for comparison.
What incentive does the average user have to spend more money on decentralized storage to store data?
Is it safer?
Existence miners can shut down at any time on decentralized storage by no means save a share of security in Ariadne and Amazon each.
More private?
There’s no difference between encrypted presence on decentralized storage and encrypted presence on Amazon.
The 10,000 gigabytes of bandwidth in decentralized storage simply doesn’t compare to the fiber in a centralized server room. This is the root problem of the business model, no one is using it, no one is buying it, so what’s the big vision.
The goal of EpiK is to guide all community participants in the co-construction and sharing of field knowledge graph data, which is the best way for robots to understand human knowledge, and the more knowledge graph data there is, the more knowledge a robot has, the more intelligent it is exponentially, i.e., EpiK uses decentralized storage technology. The value of exponentially growing data is captured with linearly growing hardware costs, and that’s where the buy-in for EPK comes in.
Organized data is worth a lot more than organized hard drives, and there is a demand for EPK when robots have the need for intelligence.
Deep Chain Finance:
Let me ask Leo, how many forked projects does Filecoin have so far, roughly? Do you think there will be more or less waves of fork after the mainnet launches? Have the requirements of the miners at large changed when it comes to participation?
We don’t have specific statistics, now that the main network launches, we feel that forking projects will increase, there are so many restricted miners in the market that they need to be organized efficiently.
However, we currently see that most forked projects are simply modifying the parameters of Filecoin’s economy model, which is undesirable, and this level of modification can’t change the status quo of miners making up computing power, and the change to the market is just to make some of the big miners feel more comfortable digging up, which won’t help to promote the decentralized storage ecology to land.
We need more reasonable landing scenarios so that idle mining resources can be turned into effective productivity, pitching a 100x coin instead of committing to one Fomo sentiment after another.
Deep Chain Finance:
How far along is the EpiK Protocol project, Eric? What other big moves are coming in the near future?
The development of the EpiK Protocol is divided into 5 major phases.
(a) Phase I testing of the network “Obelisk”.
Phase II Main Network 1.0 “Rosetta”.
Phase III Main Network 2.0 “Hammurabi”.
(a) The Phase IV Enrichment Knowledge Mapping Toolkit.
The fifth stage is to enrich the knowledge graph application ecology.
Currently in the first phase of testing network “Obelisk”, anyone can sign up to participate in the test network pre-mining test to obtain ERC20 EPK tokens, after the mainnet exchange on a one-to-one basis.
We have recently launched ERC20 EPK on Uniswap, you can buy and sell it freely on Uniswap or download our EpiK mobile wallet.
In addition, we will soon launch the EpiK Bounty platform, and welcome all community members to do tasks together to build the EpiK community. At the same time, we are also pushing forward the centralized exchange for token listing.
Users’ Questions
User 1:
Some KOLs said, Filecoin consumed its value in the next few years, so it will plunge, what do you think?
First of all, the judgment of the market is to correspond to the cycle, not optimistic about the FIL first judgment to do is not optimistic about the economic model of the project, or not optimistic about the distributed storage track.
First of all, we are very confident in the distributed storage track and will certainly face a process of growth and decline, so as to make a choice for a better project.
Since the existing group of miners and the computing power already produced is fixed, and since EpiK miners and FIL miners are compatible, anytime miners will also make a choice for more promising and economically viable projects.
Filecoin consumes the value of the next few years this time, so it will plunge.
Regarding the market issues, the plunge is not a prediction, in the industry or to keep learning iteration and value judgment. Because up and down market sentiment is one aspect, there will be more very important factors. For example, the big washout in March this year, so it can only be said that it will slow down the development of the FIL community. But prices are indeed unpredictable.
Actually, in the end, if there are no applications and no one really uploads data, the market value will drop, so what are the landing applications of EpiK?
Leo: The best and most direct application of EpiK’s knowledge graph is the question and answer system, which can be an intelligent legal advisor, an intelligent medical advisor, an intelligent chef, an intelligent tour guide, an intelligent game strategy, and so on.
submitted by EpiK-Protocol to u/EpiK-Protocol [link] [comments]

My college essay on Bitcoin and computers. First Draft. Thought you all might like this.

I always thought computers were simple. At their fundamental level, they are just 1s and 0s. An invisible dance of yes’s and no’s running through a sheet of silicon at billions of times per second. Computers are amazing and unique machines that will forever be apart of our lives. Our sheer dependence on computers motivated me to research the topic? As my understanding of this concept grew, so did my curiosity. I started researching computers as much as I could. I would spend hours a day browsing Youtube and reading articles just to satisfy my interest. That’s why when my dad first brought up the topic of bitcoin during my freshman year, I wasn’t surprised to hear his enthusiasm. I had learned much about this currency over my couple years of research, but I knew very little about how to actually make money off it. He had been tracking the price for a few months and was considering buying a few, just to see what would happen. Little did either of us know; the price of this virtual coin would multiply nearly 30 times in just a few short months.
A few weeks passed and eventually he brought up the topic of buying bitcoin again. His initial interest inspired me to look more into currency and how it worked. I told my dad there was another way to make money off of bitcoins: Bitcoin miners. These impressive and powerful computers are precisely optimized to earn these coins, and I knew I could make one. I explained how this was my once in a lifetime opportunity, like how he explained to me that he missed out on investing in Apple in the 80s. “It could be a money-printing machine,” I joked. With our excitement peaked, we decided to split the $2,000 investment 50/50, and I started the buying process.
I started the process by buying the parts of the machine. I had learned that like Legos, a computer consists of simple components to make the whole. However, unlike an ordinary everyday computer, ours would have a concentrated task. Mining bitcoin is not a complicated process for a computer to do. In essence, by completing simple math problems as quickly as possible, a computer process’ bitcoin transactions from around the world and is rewarded in a tiny fraction of a coin. As more and more transactions take place, the higher the demand for processing, and the higher the reward.
I was lucky enough to know how to build the computer. However, what I was not prepared for was the constant troubleshooting and maintenance I would have to give to this project. Sometimes the computer would simply turn off randomly, sometimes a part was not detected, and other times it merely just ran at half its optimized rate. I learned how to fix issues where there was no logical reason for the problem. Like a calculator, I always thought a computer could never mess up. My hundreds of hours of troubleshooting and blind hope quickly changed my view. I put a vast amount of free time into the project, knowing that potential it had. After lots of hard work, long nights, and determination, I had finally completed my dream project.
I was proud of what I had created. The computer was placed in my room and was like a pet. The loud but rhythmic fans helped me fall asleep, and the heat kept me warm during the winter. From school, I would monitor the machine, and if it had run into an error, I would simply restart it from my phone. My plan was working, and in a little over half a year, our investment should turn into profit. In only a few months, we were already halfway to making our money back. We were lucky because the price of bitcoin itself had doubled since we started, going from nearly $10,000 to $20,000 in a few short months, but as I looked at my account, I had no bitcoin. A few days earlier, hackers had stolen $64 million dollars from the company I mined with.
I felt like a victim. I had done everything right. I built the computer perfectly, I managed everything, I put the time in, and I put the effort in. I was robbed, and I was discouraged. Forced with no other option, we restarted our operation. Bitcoin was still increasing in price, we thought, so there was no reason to stop now. Our operation had restarted and was going well, but for the first time since we started, the price of bitcoin was not doing so well. The bubble was about to burst. It began with my hack, which made national news and hurt the price. Although the price recovered in a few weeks, it was going down again, fast. Believing it would improve, my dad and I decided to hold and not sell. A month later, Bitcoin was back to $8,000 per coin. The fad was over, and we couldn’t even make a profit over our cost of electricity. Again, I was robbed. I did nothing wrong and still lost almost everything. I decided to put the computer in a box and wait a few months; however, the wait was worthless. The coin plateaued at about $10,000, and it simply was not sustainable to continue mining. A year later, we sold the computers for parts and managed to make back about half our initial investment. It was over.
I had lost over $1,000 and months of time and effort. However, as I moved on and started to reflect on the experience, I was the winner. I learned so much about computers and how they operate. In the end, I had learned many skills, from patience and compassion to planning and researching. I had learned not only to build a computer but to manage systems and multitask. I learned countless lessons and gained essential and unique skills that I hope will carry me throughout life. This unique experience has taught me to always keep trying at what I believe in. There’s always an award for doing whatever I think is right. I hope to bring these beliefs and lessons with me throughout life, as I learn and grow from what I was taught. Whenever people ask me what computers are, I always laugh and explain how a computer is just a bunch of simple lego bricks working together to do complicated tasks. However, inside I still have trouble answering this simple question. It is merely just parts working together, but a computer is so much more complicated and beautiful than that. Honestly, I still don’t understand them.
submitted by NetgearX6S4000 to Bitcoin [link] [comments]

Reverse Chance Me: Indian-American Male

Demographics: male, upper middle class, Asian Indian, heterosexual and cisgender, Long Island, New York, high school class of 2021
Intended Major(s): Mathematics
ACT/SAT/SAT II/PSAT: 35 (35E, 36M, 34R, 36S), 1570 (800 math, 770 english, 23/24 essay), 800 math2, 800 chem, 800 physics, 1500 (760 math, 740 english; hopefully i get national merit since I made the cut off)
UW/W GPA and Rank: 4.0UW, 103.96% weighted so far (out of 100%, APs weighted 1.08 and Honors 1.06; I'm not sure what it is out of 5 but everything's been an A or higher so far)
10th: AP World History (4, 99%), AP Computer Science Principles (4, 99%), AP Calculus BC (5, 97%); all other grades except Chemistry (96%) at least 97%
11th: AP Lang (5, 97%), Multivariable Calculus and Linear Algebra (through school, weighted as an AP, 98%; I get college credit from a state university for taking this), AP Physics 1 (5, 98%), AP United States History (5, 99%), AP Computer Science A (5, 100%), AP Statistics (self-studied, 5); all other grades 97% or higher
the above courses were taken through school, but I enrolled as a non-matriculated undergraduate student through the same state university that's giving me college credit for high school multi to take the following courses in Fall 2019 and Spring 2020 respectively:
"Logic, Language, and Proofs" (basically introduced me to the language of mathematics and abstract proof construction, etc.) (A+), Introduction to Real Analysis (third-year undergraduate course, probably) (A+)
12th: (incoming senior) AP Lit, Differential Equations (through school, weighted as an AP; I get college credit from a state university for taking this), AP Physics C (I don't know which yet but probably E/M), AP US Gov, AP Micro, AP Spanish Lang
the above courses are going to be taken through school, but I enrolled as a non-matriculated undergraduate student through the same state university that's giving me college credit for high school diffeq to take the following courses in Summer 2020, Fall 2020, and Spring 2021 respectively:
Applied Complex Analysis (well, I actually just finished this course, so I got an A), Advanced Linear Algebra, Analysis in Several Dimensions
like 12 APs in total by the end of senior year; I have taken the most rigorous courses available + courses at college
AIME Qualifier (missed the USAMO cutoff by one AIME question's worth of index points, oops), HMMT/PUMaC awards
President's Volunteer Service Award, Gold (by the end of senior year, I should have lifetime ~650-675 volunteer hours): 3-time winner, 10th, 11th, and (expected) 12th
AP Scholar (I don't remember which though I have it on my application, but based on the scores I have, you can figure it out if you need to), Commended PSAT Scholar
UNSCO Qualifier, USAPhO Qualifier, USACO Silver
Regeneron Semifinalist, Scholastic Silver Writing Award (this was like 2-3 years ago, I don't remember much about it)
they're actually coming on really good so far, not done writing though
Letters of Recommendations: my multi/diffeq teacher (really epic), my physics 1/c teacher (pretty good), my counselor (really good); additionally, I'm considering getting one from my principal (he first set me up to take the college math courses because he's an adjunct professor at the university I took courses at, so it should be cool), and a Princeton dude (see below for more explanation; he also used to mentor me before I started doing research)
Extracurriculars/Leadership Roles:
Science Olympiad (have won state medals before), Math Team (treasuresecretary 12th, top scorer in county-wide mathematics tournaments), Coding/CS Club (treasurer 11th, vice president 12th), National Honor Society, DECA (have qualified for the national-level competition, ICDC), did Model UN (but stopped after 10th, so probably won't put this on)
treasurer of our school's science research program from 2018 (personally offered this position by the director of the program) to when I graduate from high school in 2021
information technologist for a science education nonprofit
formerly unpaid teacher assistant (now paid 'intern'; my position got renamed because I've started doing more than just TAing) at a weekend mathematics enrichment program I used to attend when I was younger; I just set up and now own/manage the program's Discord as well as helped implement a grading system for the students on Google Classroom during the transition from real-life classes to online, Zoom classes due to COVID-19
CTO of a startup digital advertising business I co-founded with my friend (I personally made just under $15,000 so far, but the business's net worth is about $40,000)
in July 2018, I attended a summer program that related to computer science, electrical engineering, and informatics; we learned several skills such as programming Python (including NumPy, Matplotlib, and Pandas) in the context of physical engineering concepts and the Raspberry Pi; I engineering a program comparable to the widespread arcade game “Wheel of Fortune”
hospital volunteer (transporter, a large source of my volunteer hours)
Bitcoin/general cryptocurrency trademiner, I've set up several ASIC miners and studied their stock trends to optimize the amount of money I make from them, although I put a hold on this activity when crypto started dying again
10-year piano player (stopped in 9th grade though, but I went to state-level festivals and got perfect scores on my performances), 5-year viola player (planning to qualify for the state festival this year), JV Tennis (memes), 7-year soccer player (stopped after 9th grade, though)
also I'm probably not gonna put this on my application, but out of enjoyment, my friend and I conducted a satire analysis on our in-class chemistry performance through research, usage of spreadsheet/database applications, and Python’s machine learning modules; essentially, we collaborated on our mutual objective for his project in that we sought to “predict” when our grades would drastically fall, and a psychological explanation as to why we, somewhat academically-oriented students, tend to make the most drastic shortcomings when it comes to in-class performance ( used long short-term memory in the structures of recurrent neural networks which served as a model for Keras, a Python deep learning API, to make a grade prediction based on learning the ups and downs of our previous grades)
not sure if this counts for anything, but in May of 2012, in a Nassau County-based competition that I took against high schoolers double my age at the time, I won first place for the highest amount of problems correct so that's pretty cool I guess
finally, I've done over-the-summer online research under the guidance of a postdoctoral researcher in mathematics I got the contact of during a visit to Princeton University (did his doctoral thesis under the mentoring of Terence Tao, a world-renowned Fields Medal recipient)
Other life circumstances:
recovering narcotics addict (I had an injury while playing soccer in the spring of 9th grade and got hooked for a year after I didn't need them anymore), violent/alcohol-ridden home situation; I've had some issues with mental health in 9th and early 10th grade but I think I'm doing better now yay

I really wanna make it into some kind of Ivy/T20 kinda school, but I'm open to any suggestions as to where I stand in college admissions. Also, because I took all those college math courses, I got permission from the undergraduate director of mathematics to transfer those into credits for a bachelor's degree at that state school, so I can graduate two years early (2023 instead of 2025) if I get accepted and enroll there as a full-time student.
I'd really appreciate any help! Thanks!
submitted by mesmore to chanceme [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
Technology and some more:
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
Down the rabbit hole
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
Smart contracts
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
Smart contract on a sharded environment and state sharding
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
Easier to follow links on programming Scilla Ivan on Tech
Roadmap / Zilliqa 2.0
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
Business & Partnerships
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
Marketing & Community
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

*** wormminer *** bitcoins minen ohne Muss zu Investieren !!! What is Bitcoin Mining? - YouTube What is Bitcoin Mining?  Bitcoin Mining Explained  How ... Best Bitcoin Miner Machine Free download ️ Best BTC Miners ... Bitcoin Mining Explained - YouTube

Beliebte Bitcoin Miner sind die Antminer. Die Miner werden einfach via LAN-Kabel an einen Router angeschlossen. Anschließend können diese über den Webbrowser konfiguriert werden. Es ist kein weiteres Gerät oder weitere Software nötig, da es sich um Standalone Miner handelt. Die neuesten Miner haben mittlerweile auch ein integriertes Netzteil. Wer Bitcoin selbst von zu Hause aus minen will ... Fast Bitcoin miner for Laptop. With one button your can start mining bitcoins! Easy bitcoin address setup. Every 4-5 days you can withdraw your mined bitcoins. No fees! Get massive hashing power for mining Bitcoin from your own pc with our unique algorithm. Approximately after 4-5 days you mining 0.005 BTC. Watch video how does it work. Free app that mines bitcoins. With regular payouts, great ... Bitmain Antminer L3+ Bitcoin Miner + Bitmain APW3+ Netzteil Litecoin Miner (LTC) EUR 349,00. Bitmain AntMiner AntRouter R1-LTC Scrypt WiFi Crypto Miner mit ASIC Chip Schwarz. EUR 75,90. Bisher: Bisheriger Preis EUR 79,90. Bitmain Antminer S9 13.5 th/s ² Incl. PSU. EUR 249,00. Bitmain AntRouter R1-LTC WiFi Router Scrypt Miner Mining 802.11g/n 2.4G ASIC Neu . EUR 86,90. Crypto Browser Bitcoin ... Don’t try to buy a miner based on only price or only hash rate. The best ASIC miner is the most efficient bitcoin miner. Aim for value. Bitcoin Miners for Sale on eBay or Amazon. If you’re a hobby miner who wants to buy a couple rigs for your house, eBay and Amazon both have some decent deals on mining hardware. Used Bitcoin Mining Hardware ... Miner sichern das Bitcoin-Netzwerk, indem sie einen Angriff, eine Veränderung oder ein Stoppen erschweren. Je mehr Miner abbauen, desto sicherer wird das Netzwerk. Die einzige Möglichkeit, Bitcoin-Transaktionen rückgängig zu machen, ist ein Anteil von mehr als 51% der Hashrate im Netzwerk. Eine verteilte und auf viele verschiedene Miner verteilte Hashrate sorgt dafür, dass Bitcoin sicher

[index] [11481] [11186] [11791] [12029] [48011] [41500] [32388] [6875] [21608] [483]

*** wormminer *** bitcoins minen ohne Muss zu Investieren !!!

KnC Miner sells machines that help the Bitcoin network work. The reward, if a miner is lucky, is a cut of the digital money. Subscribe to FORBES: https://www... eine neue Bitcoin miner seite die mit der anmeldung eine mining maschine schenkt für ein jahr. näheres im video. anmelden hier: For more information: and What is Bitcoin Mining? Have you ever wondered how Bitcoin is generated? T... This "Bitcoin Mining' video will help you understand what is Bitcoin, what is Blockchain, advantages of Bitcoin, advantages of Bitcoin mining, what is Bitcoi... ️ Download for free from Best #Bitcoin Mining Software: Best BTC Miners in 2020 Welcome to Bitcoin #Miner Machine. Bitc...